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Abstract

S. K. KATTI

We study Langmuir's model, Y = ax v- where e is independentlyi+bx
and identically normally distributed, N(0, a2). The Y/x versus Y plot had
a 90% midrange which did not contain the true curve in a vast portion of
the range of x. The 1/Y versus 1/x plot has undefined expected values, and
gets worse as the sample size increases. We recommend the use of nonlinear
least squares.

In nonlinear regression, we prove that a design which gives at least
a local minimum of the generalized variance of the parameter estimators
is one where half the observations are at the maximum value of x, called
x0,3, and the remainder at x = 2+bx, The use of such an extreme design,

ic optimal in simple linear regression. It is curious that it is optimal in
nonlinear Langmuir's model.
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I. Introduction

A. BASIC MATERIAL: The Langmuir model or isotherm is defined by

axY = + c
1 + bx

where x is the control variable, free from error. The response variable Y,
is measured with error e, which is not a function of x. We assume that the
errors ci, i = 1, ... , n are i.i.d. N(0, a2) both for the sake of simplicity
and to go along with the literature. Our objective is to estimate a and b.

Chemical engineers and biologists who wish to estimate a and b com-
monly avoid minimizing this sum of squares:

n

X2
E y. axi

z 1 -I- bxi )2 (1)
i=1

Instead, they minimize some other sum of squares, such as the following:
Linearization I:

n

E (yi - axi -I- bxiYi) (2)
:=1 ,

Linearization II, Scatchard:

n 2 YE -Yi- a -I- bYi) or plot versus Y (3)
i=1 ( Xi X

Linearization III, Lineweaver-Burk:

x---.11 (1 b 1
2

a axi ) or plot 1 versus 1
Y x

(4)

Each transformation to linearize the model, or linearization, is obtained
by modifying Y = ax/(1 + bx) without regard to E. Presumably, nonlinear
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models are linearized not because of the struct re of the error, but to avoid
difficulties in numerically obtaining nonlinear least square estimates, and
permit graphing a straight line. The question wh.ch we raise is: what is the
effect of the error term on such a linearization and on the inference made?

We investigate these methods of estimating the parameters, for the
usual design of the control variable, x. Our conclusion, along with that of
Colquhounl is that the linearization does not work. On the other hand,
nonlinear Estimation poses no particular problem when one has access to a
computer. We also develop designs of x values to obtain better parameter
estimates, under the assumption that the Langmuir's model is true.

B. DERIVATION OF THE MODEL: Langinuir2 derived his isotherms in
1916. We use chemistry notation to derive the model. A compound of
components A and S is written AS. The concentration of a compound A is
written [A], using the brackets to denote the concentration measure.

For one mobile phase compound A, and stationary phase compound S,
the reaction A + S ,='. AS has the reaction equilibrium constant

[AS]

[A][S].

By the conservation of mass, the number of components of S
constant c, where [S] + [AS] = c. So

k = [AS]

[A](c [AS])7

and ck[A] = [AS] + k[A][AS], and

ck[A]
[AS] =

1 + k[A]

's some

To translate the model into the usual notation of statistics, define
a = ck, b = k, Y = [AS], and x = [A], so E(Y) = --i+axbx. The model can
be derived for Michaelis-Menten reactions similarly, shown in many text-
books.

3
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Doug Doren, a chemist at the University of Delaware, knew that one
can optimize over parameter estimation by taking equally many observa-
tions as far apart as possible after linearization. Based on the derivation of
the Michaelis-Menten, we suspect that some people have guessed our opti-
mal design. It seems that no one has shown its optimality using analytical
methods before us. So our claim to fame is in proving something which the
best minds have only suspected.

C. NONLINEAR ESTIMATION: In general, one finds the simultaneous
zero of the partial derivatives of x2 to minimize x2 in equation (1): -272 = 0
and V- = 0.

In our problem, we found a transformation of these equations helpful.
Since the model is linear in parameter a, we can solve in closed form to
obtain a quantity h(b) such that a = h(b) :

\--Nn
1.-ri=1 (l+bx,

Next, we transform the second equation, to an equation of the form

5,2 ax2

r are 4- ab* =0.

We take the approach of taking the derivative of x2[h(b*), V] with respect
to b* to obtain:

dh(b*) ax2 ax2
db* Oh(b*) Ob*

Define z. = x to simplify the expression. So, the derivative of h(b)/ 1+bxi
with respect to b is

= 0.

h' (b) = dh(b) En YZ? V'n. Z? --I-- 9 V'n Z3. -'.71 Y.zi=i i I L...sz=1 t -1- 4-1di=1 t 7.--ii=1 t I

1Cn 212
lLi=1 zi1
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We complete the evaluation of the formula to obtain the formula used
on the computer:

= 0

We solve this equation for b to obtain z = h(b), without checking

2-13--
)

0 since we have already solved that problem analytically.aa.
We use bisection, or binary search to find b* , where b* is such that

g(b*) ':.%2 0. We define the sign function as follows:

=
if g > 0

sgn(f) 0 if g = 0
1 if g < 0

We first find values b1, b3 such that the signs are different,
b3+sgn[g(b1)] 0 sgn[g(b3)]. Next, assign b2 4 bl

. If sgn[g(b1)} = sgn[g(b2)],
we assign b1 4 b2. Otherwise, if the solution is not in hand, we assign
b3 4-- b2. The process is repeated till we know the least squares b to enough
digits. Bisection gave reasonable answers for 32 000 simulations. Hence
this method is recommended to obtain the nonlinear least
squares for Langmuir's model. We do not need the general purpose non-
linear estiniation schemes such as the maximum descent, along with the
transformations of Habibullah3. For the two and more solute extensions
of Langmuir's model, general purpose numerical minimintions might be
necessary.

II. Simulation Based Results 1

A. LINEAR III WORSE AS SAMPLE INCREASES: For each simulation
in this section, we use the design (1/n, 2/n, ... , n/n). For each xi, we
have an expected value of Yij, that is --1 for xl, x2, ..., xn. Soi+axbx,1

ax.
Yii =

:

1+ bxi

5
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for i = 1, 2, ... , n, and j = 1, 2, ... , 2000. The eii come from a normal
random number generator, with mean zero and standard deviation 0.2. For
each sample (Yij, xii), i = 1 , . . . , n, we estimate (a, b) . So we have 2000
estimates of (a, b) for each case considered. We used a :---- 25 and b = 10,
the usual parameter estimates (rounded to integer values) given by Anita
Katti, from her previous work at oak Ridge National Labs.

Note that at x = 0, 8(Y) = 0. So, the relative error is infinite. At x =
oo, the relative error is 8%. Since the expected value of Yi is proportional to
a, and we are using least squares, root n asymptotics apply. So we expect
similar results for other parameterizations with our values of a/(n112a). We
chose a combination of standard dev'_Ltion and sample size to illustrate our
results.

,.

The "range" of estimates a is the largest of the 2000 simulated esti-
mates less the smallest. The Pr(b < 0) is the probability observed in the
simulation.

Table 1
..

Estimates a, with a = 25, = .2.
size: 10 40 160 640
III range: 90 73 95 338 131 000
NL range: 81 25 12 7
III min: 7 -16 -12 -46 460
NL min: 12 17 20 22
Pr(b < 0) : 0 2% 31.8% 39.7%

Table 1 shows the behavior of methods III and NL for increasing sample
sizes, picking x = qi-, -an, !, ... ,

Since the density of Y is continuous and nonzero at zero, and lineariza-
tion III contains -?7, the theoretical moments are infinite or undefined. This

shows up as the vast range 131 000 for a when method III is used, while
the range for the nonlinear decreases to 7. Thus, the probabilities that gave
reasonable midrangts for method III and small sample sizes are less helpful
for larger sample sizes.

axFigure 1 contains a graph of fr = --,--
11-bx We have 2000 graphs. To

reduce volume, we take a point x on the x-axis. We compute all of the
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2000 f., and rank them. We throw away the lowest and the highest 5%
or 100 of the Y-values to obtain an interval which contains the remaining
90%. We plot the 101st and 1900th points. We call them the .90 midrange.
Linearization III has much larger midranges than nonlinear.

Linear III versus Nonlinear .90 Mid Ranges

A. Sample Size n=40
Fig. 1.

B. Sample Size n=640

Figure 1 is a comparison between linearization "III" and nonlinear,
"NL" least squares. The sample sizes are 40 and 640. The true curve
is E(Y) = 25xA1 + 10x), and is labeled "true." The tnidrange curves
are labeled "III" for estimation using linearization "III". The midrange
curves for nonlinear least squares are labeled "NL". The standard deviation,
a = Var1/2(e), is 0.2 in the 2000 simulated samples used.

For the cases of n=40 and n=640 values of x, located at n 1

i = 1, . . . , II, we see that the nonlinear least squares midrange is nearly
symmetric about the true curve and closer to the true curve than the lin-
earization III midranges for the vast majority of values of x. Linearization
III given in Figure 3, part B with sample size 640 is distinctly worse than
the curve in part A for a sample size of only 40. This is due to the reciprocal.
For n=640, there are more observations near x=0 than for n=40.
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At sample size 640, about 40% of the estimates of b are negative for
linearization III, given in table 1. These negative estimates lack physical
meaning, and yield the negative midrange curve values for x < .1, for
linearization III.

The loss of accuracy with increasing data, shown in table 1 and figure
3, is not acceptable. So, we set aside linearization III.

B. FURTHER COMPARISONS BY SIMULATION: Next, we compare es-
timates obtained through least squares on Linearizations I and II with non-
linear least squares. We chose the following thirty values of x.

2 6

601

(xi) = (.1, .1, .1, .2, .2, .2, .3, ..., .9, 1, 1, 1).

Linear I, II versus Nonlinear .90 MidRanges

x

2 6

II

A. Linear I versus Nonlinear B. Linear II versus Nonlinear
Fig. 2.

Figure 2 contains graphs of the midranges for the methods Lineariza-
tion I, Linearization II, and NonLinear (NL) estimation. Circles are drawn
on the true curve, E(Y) = 25x/(1 + 10x), to indicate the locations of the
observations. The midrange curves for nonlinear regression are in dashes.
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We use Figure 2 to compare linearizations "I" and "II" with non-
linear least squares. The standard deviation is 0.2, and the design is
(xi) = (.1, .1, .1, .2, .2, .2, .3, ... 1). The midrange curves for nonlinear
least squares are labeled "NL", and consistently contain the true value,
quite unlike the midranges for the linearizations.

Table 2
Design (x)

..

For Parameter estimates a, for a = 25
= (.1, .1, .1, .2, ... , 1), a = 0.2
Linear I Linear II Nonlinear

range: 15.508 21.182 34.8
Cor(it, b) : .99997 .9989 .99435
mean: 6.467 17.885 25.559

To get a better assessment of the situation, we look at the estimated co-
relations in Table 2. We use the following mathematization of co-relation,
for estimators 01, e,, with parameters Pi, 92 :

E(01 -81)(2-92)
co relation(e1, e2) =

[EA 01)2E(02 02)2]

To estimate the co-relation, we substitute means for expectations. The
estimated co-relations are .994 and up, so the parameter estimates are
highly co-related, making accurate estimation difficult. These co-relations
and the nonelliptic squared error contour graphs of Colquhoun' imply that
finding the minimum using the maximum descent method can be difficult.
Habibullah3 transforms such contours to approximately circular contours
by transforming the parameters. He transformed concentric banana shaped
contours, which apparently were not asymptotically elliptic, to roughly cir-
cular conLours. In one of the problems, the reduction was from 13010 iter-
ations for the usual maximum descent to 19 iterations after the transform,
and from 9425 iterations to 41 in another. Eastham et al.4 found trans-
formation of the parameters quite useful in finding maximum likelihood
estimators for the three parameter lognormal distribution. We expect the
trick of transforming the parameters to permit the use of numerical min-

9
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imizing even when the two and more solute extensions of the Langmuir's
models do not permit the simplicity of using bisection as it was done here.

In view of the regions in which the midrange does not include the true
curve, and Table 2, we discard methods I and II.

C. EVIDENCE FOR ASYMPTOTIC NORMALITY: Next we look at non-
:: tear regression with uniform design, in table 3. The mean goes to the true
value 10 as n 4 oo. The mean squared error of the estimator goes to zero
at the proper rate of Thus, when multiplied by ;--16, the mean squared
error is as constant as can be expected from simulation.

Table 3 Moments of 1) by simulation
For b = 10, nonlinear

size: 10 40 160 640
mean: 10.87 10.18 10.06 10.02
iMSE : 15.71 10.71 10.61 11.05
skew: 1.55 .57 .31 .17
kurt: 7.84 3.56 3.32 3.32

Our skewness is the mean of cubed error from the true value of the
parameter, and kurtosis is the mean of error to the fourth power. We make
the skewness and kurtosis dimensionless, independent of scale by dividing
by the mean squared error to the powers and 2, respectively. We show
these moments (estimated from 2000 simulations) in table 3.

The skewness is going to zero, and the kurtosis to three, which is the
value of the kurtosis for the standard normal distribution. This implies
rapid convergence of the distribution of parameter estimates to the normal
distribution.

So, one can expect the asymptotic normal approximation to the finite
sample distribution of (a. b) to be a good approximation. The asymptotic
formula is derived in Chapter III.

1 1
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III. Analytic Results

A. ASYMPTOTIC PARAMETER ESTIMATE VARIANCES: Define (a, b)
as the constant, true values of the parameters, (a*, b*) as variables, and
(a, b) as parameter estimates. Also, yi = axij(1 + bxi) + Ei. The control
variable is x, and the response variable is y.

We recall our sum of squares,

n
a

Q = E (yi 1 + b**xixi

SO
Oa*

)

n
Xi Xi Xi0 = E Ei . + pi

1 + bxi 1 + bxi 1 + bx:

n

0 = Eeia( Xi:. )9+ pia(
\ 1 + Oxl

X.

i=1 i 1 + bx1

2

)
a2( x2

)3

We assume that we will use reasonable sequences of designs of ex:
periment. We assume that for reasonable designs of experiment, a and b
are consistent estimators of a and b. We take a large enough sample that
Aa = aa, and Ab = 1) b are infinitesimals with high probability. Define:

and

12

fi
n

Xi Xi ( Xi )2
= Di . + p . a .

z=1 1 + bx, 1 + bxi 1 + bx,

n 2Di( Xi )2 +pi( Xi,, ) Aa)( xi,, )3
1 + bxi ) 1 + bxi )i=1 1 + bx1)

11
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The model is linear in a, so the functions are already expanded in Aa.
We expand by Taylor series in Ab only, about zero.

fl(E; Aa; Ab)

Aa; 0) + aAb(e; Aa; 0)

x ( x. )2 2E E.

i=1 l + Pi 1 +b)ci +bxi /I

2 3+ E Abili( xi xi )
1 + bx1 1-I- bx;

Aap2ia -2 Ahcip?a-2
i=1

correct to infinitesimal of the first order.
Define pk = Er: p, and similarly for Epic =

Aa; Ab) = aa2 Abep2a-2 Aba-2,

Next, we multiply by 2-2--n to obtain

0 aqi Aap2 Abp3 AbEp2.

Now we consider the term Ep2, in the Ab term. Since the Ei's are i.i.d.
N(0, a2),

Var(Ep2) (1 n 9)
Var - E eip7

n
i=1

n

= 7 E Var(ei)/t4i

0" p'



So, eit - N(O, -ka21t4), and the term -Ab1.27 is an infinitesimal of
higher order than Ab. Hence, ignoring the -Abfp2 term in comparison
with Aa and Ab:

a(7-2):-_-_d [42 -71

Next, -2orrect to infinitesimal of the first order,

ME; Aa; ./.1b) = f2(e; L\a; 0) + Ab--a-g)(9f2 (E; L\a; 0)

E 2Eipia 2- 3tt1/4a-2 (a + Aa)pi a-3

i=1

+1-2 -26.1:011.4(1-3 +3,Abpla-3

We multiply by --a3 to obtain

0 = a(q.22) /..\a12-5- 2Ab(/.23) Abp4

Similarly, we drop the AbEid term. yielding Var(Eit3) = a2p6.
Now we discard the ilbep3 term, leaving

Honce,

and

[aelt]
af/I2

a(Tp-5.)

[
-7

P3

r 3 -17]

-12.51 r.Aa La
LAbi

[Aal,
Ab 1.221

13
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So the covariance can be found as

where

[Cov(ii, b)] = a2 1 [ Var(EP)
Coy (EMI Ep2)

mi

,
Covv:P EP9 -\/ m--1T

Var(cp2)

1 4

[
ft 2P4 P3 -311 P2 I

-2The need for M to be nonsingular makes it necessary that ii2
is not 0. A sufficient condition to make M nonsingular is that there be two
different and nonzero values of x in the design, shown in other writings.
Next, recalling the independence of the c's,

So

a2
[Cov(fp, etiz)] = n2_12

LP 3

[Cov(iz, -6)]

= a2M-1 [rov(cp, Ep2)] M-1T

a2 Cl2

n (p2 2)1

a2 (72

n (p2 p4 p32) 2

a2 U2

r p3i [ p2 p3
P4

P3 1
P3 2 J 3

124 123
2

I

ri 0 [
1 p3 ---p2

,n pt-f

p4
P3

P3 P2]

It is consoling tc, note that this matches with the formula in Oliver5,up to a clerical error in Oliver'. The error can be removed by substituting

14
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t he definitions

x3
B

(K x)3

for the definitions

B = E x2

(A. x)3

C =
(K + x)4'

x4

x2
C =

(K + x)4.

Next, we check for concordance or discordance between the asymptotic
results and simulation results. We standardize the mean squared errors by

lltiplying by the sample size, so the variances will not go to zero as n
goes to infinity. For the design (x) = (.1, .2, .3, ... , 1), and replicates
of this design, with parameters a = 25, b = 10, and a = .2, the matrix of
standardized covariances is as follows.

r nVar(ii) nCov(iL, 6) 1 1488.699 232.3021
nCov(i;, b) nVar(b) J L 232.302 111.829i

Table 4 Comparison of Finite and Asymptotic Moments
Simulation Asymptotic

10 40 160 320 [Cov(ii, b)]
nMSE(ii) 605.4 508.5 502.2 497.3 488.7
nCov(a, '6) 325.8 250.1 237.4 235.5 232.3
nMSE(b) 141.8 117.6 115.2 114.2 111.8

We compare the standardized mean squared errors and covariances
obtained from asyrnptotics with coefficients from simulation, using the same
designs. The rt"'s and variance-covariance matrix above are the same for
any number of replications of the same design.

With increasing sample size, the simulation based estimates approach
the asymptotic based approximation from above.

15
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B. OPTIMALITY CRITERION AND ALGORITHM: Next, we define the
standardized, generalized variance as the determinant of the matrix of stan-
dardized covariances. We define the optimal design as the design minimizing
the standardized, generalized variance. We use the asymptotic formulae as
approximations to the true values. So the standardized, generalized vari-ance is asymptotically:

SGVar, = nVar(et) nCov(a, b)
A A

nCov(a, b) nVar(b)

a4a4

T.
P2 P4 P3

Minimizing this quantity is equivalent to maximizing its denominator
divided by a6 with respect to xi,

G*
rn 2( Xi

L1
)2] ( Xi )4] ( Xi )31

1 +
Lz=1 + bxi

L1= + bxii=1
Define

1 + bx. xi
1 + bxi'00

so v takes exactly the range [0, 1].
Maximizing G* with respect to (x) is equivalent to maximizing withrespect to the vector (v) :

G
1 + UX 6

v.1
X I2 r i} 1Zco i=1 i=1 .i=1

Note that this G is not a function of a nor o-2. Hence the optimal designis the same for all a and a2. Given (vi), the experimenter should recognizean approximate value of b and get (xi) by solving vi Sowe work with these vi, E [0, 1] to solve the problem in generality andtransform to real units when finished.

16
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If we multiply each vi by some constant k > 1, then the new value of
G is the old value multiplied by k6. Since each xi is in [0, oo), each vi is
between zero and one, and the optimal design contains at least one vi = 1.
We set vi = 1.

Our algorithm is as follows. For any n - 1 values, we find the optimal
nth value to add. When we have enough observations, we find the best
value of v., based on the other v:s. We continue for vi, i = 2, 3, ... , n,
and repeat until the algorithm converges.

We define

m-1 n

SV, T71) = =E /v, (E v!) + ( >--- v!

iE{1, n),,m i=1 i=m+1

To take partial derivatives with respect to vm, we express G as

G = [S(2, in) + v!i] [S(4, m) + v} - {S(3, m) + v73,2}2

= S(2, tn)S(4, rn) S2(3, in)

+ S(2, m)v:1,1+ S(4, m)v,2:71- 2S(3, in)v,1

aG
= 0 = 4S(2, m)v1 6S(3, m):4 + 2S(4, m)vm

avm

= 21/m {2S(2, m)v!, - 3S(3, m)vm + S(4, in)]

with solutions

3S(3, m) ± {9S2(3, m) 8S(2, m)S(4, m)]
vrn = 0,

4S(2, m)

The double partial derivative should be negative.

02G
= 12S(2, m)v72,.. - 12S(3, m)v, + 2S(4, ni).

av;27,



For vm = 0, the double partial is 2S(4, m) > 0 so we can discard
v = 0. For the other two roots, define the discriminant asm

d = 9S2(3, m) 8S(2, m)S(4, m).

a2G 1251(2, m) r3s(3, m) ± dil2
avF 16S2(2, m)

12S(3, m) [3,9(3, m) ± di] + 2S(4, rn).4S(2, m)

Next,

2S(2, rn)2--82
2G

= 9S2(3, m) 8S(2, m)S(4, m) ± 3S(3, m)di.vn

The smaller double derivative could be negative or zero, if the discrim-
inant is zero:

82G d ± 3S(3, m)c/1
av,2 2S(2, m)

The interest in this value of vm is not based on knowing that it is a
relative maximum, but on knowing that it is the only interior point which
could be a relative maximum.

Next, we used APL (A Programming Language, source code available
on request,) to compute the sequence of conditionally optimal observations.
Table 5 contains the results. The code was set up to choose vi = .5 when
there was a choice, that is, when the value of G is the same for either choice.
All aspects of this table inspire the lemma to follow. Firstly, after the initial
three, the designs added are alternating between .5 and 1. There is a choice
for odd sample sizes, but no choice otherwise.



Table 5
Table of Steps in the Optimal Design Algorithm

Values of G
Observation v = .5 v = 1 v chosen
1 1

2 .0625 0 .5

3 .125 .125 .5

4 .1875 .25 1

5 .375 .375 .5

6 .5 .5625 1

7 .75 .75 .5

8 .9375 1 1

9 1.25 1.25 .5

10 1.5 1.5625 1

11 1.875 1.875 .5

12 2.1875 2.25 1

13 2.625 2.625 .5

14 3 3.0625 1

15 3.5 3.5 .5

16 3.9375 4 1

17 4.5 4.5 .5

18 5 5.0625 1

19 5.625 5.625 .5

20 6.1875 6.25 1

As a check on our proof of the lemma, we note that when there is a
difference in Table 5, the difference is .0625 = 1/16, the same as in Cases 1
and 3 of the proof of Lemma 1.

C. LOCAL OPTIMALITY OF THE DESIGNS:
Lemma. Let us choose designs for Langmuir's model. Given a sample,

we add an x which is optimal. We set the first x equal to x. without loss
of generality. For even sample sizes, the result is half at -22-- and half2+36x.
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at x,.. For odd sample sizes we take (n ± 1)/2 observation at and---2Q-
(n T 1)/2 at

Furthermore, this design cannot be improved on by replacing an ob-
servation with a best value conditioned on the remaining observations.

Proof of the Lemma
For ease, we work with v, showing v = 1 to yield x 3-*2c. 7 and

v = 1 to yield x = x.. From the previous argument that at least one vi
must equal one, we set v1 = 1. We add the nth observation.

Suppose the previous design had m of vi = 1, and n m 1 of v = 1.
First we compute the S(l, n)'s. When is the smaller root -1?

and

1

S(l, n) = m (..-1.-) + (n m
2

4n 3m 4
S(2, n) =

4

8n 7rn 8
S(3, n) =

8

16n 15m 16
S(4, n) =

V =n 4S(2, n)
.

16
)

1)11= 21n + (1 21)rn 2/

21

1

3S(3, n) {{35(3, n)] 2 8S(2, n)S(4, n)}2

The discriminant d is

d = 64n2 + 81m2 + 64 144nm 128n + 144m

(8n 9in 8)2
8

64
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This leads to

Vn =

=

24n 21m 24 18n 9m 81

32n 24m 32
1

2
{ 32n-30rn-32

32n-24rn-32

if 8n 9m 8 > 0
otherwise.

This means the potential relative maximum is at vn = 1 if eight or less
11vi = 1 s are present per nine vi's in the previous design.

Next, we compute and maximize G for m of v = 1 and n m of v = 1.

G =
n

E,A
2

1
j=1

m(n m)
16 '

and grnG = 72.-126m 1 SO 77/ = i4 is ideal with m = 7-41- being best if n is odd,
since m must be an integer. Thus the first part of the Lemma generates
a sequence of designs with rn = 3- for n even, and m = !LP for n odd,
satisfying the conditions for 1 to be the second zero in each case. The
second part of the Lemma similarly holds, the most extreme cases being
even n after deletion and m = 741, which again satisfies the condition
L-:- < 1, using n instead of n 1 since the n in our formula for G is it 1

in the formula for the partial derivative. So the lemma is true.

IV. Simulation Based Results 2
We compare four designs. The first is (1/n, . .. n/n), called Arithmetic

1. The second is (3/n, 6/n, ... 3n/n), called Arithmetic 3. The maximum
value x = 3 is chosen from talks with Anita Kat ti. The third design is
our optimal allocation, with half the observations at xex, = 3 and half at

)---122. = .09375. The fourth design, called Logarithmic, is uniform on the
log scale with maximum value 3 and no replication.
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Table 6 Means of a., with a = 25.
Sample Size: 10 40 160 640
Arithmetic 1: 26.81 25.37 25.13 25.03
Arithmetic 3: 36.17 25.67 25.21 25.04
Logarithmic: 33.47 26.80 25.49 25.12
Optimal: 25.41 25.14 25.05 25.00

The least value of x in the Logarithmic design is computed to minixnize
the generalized (asymptotic) variance, yielding x1 = 0.327943, 0.363068,
0.370807, and 0.372685 for sample sizes 10, 40, 160, and 640 respectively.
The least value in the Logarithmic design is easy enough to compute since
there is only one quantity to vary, namely the smallest x to be used.

Five samples out of 2000 in the Logarithmic design yielded poor results,
namely least squares estimates of b in excess of 2000 with a true value of
10, and their estimates, b, were set equal to zero. Similarly, five samples
out of 2000 in the Arithmetic 3 design yielded poor results. Each of these
five samples are included in the statistics for the logarithmic design and
arithmetic designs respectively.

Note that the means for Arithmetic 1 and Optimal designs are fairly
close to the true value of 25. For the (estimated) standard deviations, the
optimal design is the best, by a factor of 4 or better.

Table 7 Standard Deviations of ii, with a = 25.
Sample Size: 10 40 160 640
Arithmetic 1: 8.46 3.43 1.69 .86
Arithmetic 3: 98.35 4.71 2.19 1.11
Logarithmic: 47.22 8.32 3.46 1.68
Optimal: 3.99 1.97 .97 .47

Next, we look at graphs of the .90 midranges for the three designs. To
make the comparisons easier, we subtract the true mean from the Y's. These
midranges are obtained by computing at each value of x, the 2000 values
of Y, rank them and graph the Y - E(Y) at the .05 level, '.05 E(Y), and
graph the Y - E(Y) at the .95 level. The boundary curves of the midranges

22
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,

cross each other repeatedly, so there is no great disadvantage in one design
over another, aside from logarithmic uniform being a bit off for x around
0.2.

0 64

.90 Midranges from Different Designs

--e,---Logarithmic Uniform
"-- Arithmetic Uniform

+Optimal
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Vil
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Fig. 3. Key: Arithmetic Uniform 3: short dashes; Optimal:
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As we increase the sample size, the midrange curves become consider-
ably closer to the true curve and to each other.

We kept track of the ten samples from the two allocations which led
to unacceptable estimates of b, that is estimates in excess of 2000 with a
true value of 10. The samples are available on request. It appears that the
logarithmic and "arithmetic 3" designs place so few observations near the
origin and near the maximum value that the estimation is unstable.

In summary, there does not seem to be any serious loss associated with
the use of our locally optimal design. To the contrary, our design might
reduce the sample size needed by a factor of three or better.



V. Regarding Global Optimality

We check whether we can improve on our locally optimal solution by
changing all of the observations simultaneously. Let 17/ = n/2 or m =
(n± 1)/2 as appropriate. We denote by di the changes to the first m values
of vi and by -4, the changes to the second half. The ranges of di are
[--,1,-, I] and of fi are [0, 1]. The expression for G becomes:

G =
[z=rn 1(+ i= +1(1

fi)2]
2 n

1

Next, we define

(1

(1

rn n

Dk = Eclize, and Fk = E pc, for k = 1, 2, 3, 4.
i=1 i=rn 4-1

We rewrite G as:

L 4

14n - 3m
+ DI + D2 2F1 + F2]

16

[16n 15m DI 3D2x + 2D3 + D4 4F1 + 6F2 4F3 + F4]2 2

18n "i'm 3D1 3D9
8I.

+ .-r- + 2-= + D3 3F1 + 3F2 F3
2

The interesting part is that regardless of the value of n, the problem of
optimal design reduces to these eight variables, D = (Dk ; Fk). We expanded
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the polynomial manually and by Mathematica. Since the polynomial is a
quadratic form in eight variables, we write it in the matrix format as follows.

is:

m(n rn)
Q = +D

16

0
-8n 9m

16
m
4

4n-3m
4

-3m
8

16n-3m
16

-8n 5m
4

4m-3m
- 4 -

+ D

1

16
_1

8
1

4
1

2
1

11

1

5

14
Ii.

1

8
3
4
1

2
1

2
1

3
4
1

12

1

4
_1

2

-1
0
1

-2
1

0

1

2
1

2

0

0

-1
i
2

0

0

1

4

1

1

-1
-1

1

1

-1

1

3
4

-2
1

2
1

-3
1
1

2

5
4
1

2

1

0
1

1

1

0

1

9.

1

2

0

0
-1
i
2

0
0

DT

The eigenvalues E, of the 8 x 8 matrix and the matrix M of eigenvectors

E = [ .000 .000 .000 .000

-.160 .654 .421 .044
.589 .051 .012 .121
.344 .312 .245 .402
.435 .466 .566 .177
.024 .288 .383 .027
.477 .129 .333 .131
.253 .373 .428 .239
.168 .125 .036 .846

M =

25

.000 2.109 3.266 5.655 ]

.066 .473 .324 .18i.,

.663 .046 .382 .222

.489 .324 .088 .460

.170 .369 .247 .124

.434 .461 .516 .320

.270 .114 .121 .726

.034 .414 .582 .212

.164 .369 .247 .124_
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It is interesting that five of the eight eigenvalues are zero and only
thre3 are nonzero. Thus, the optimal design does not depend on all eight
variables independently. It depends on only three functions of them.

The range of the three functions is not nice. We could not proceed
any further along this line. So, we checked on the global optimality by
computing the function G over a fine grid, of size 1008 over all of the eight
variables. D = [Dk, Fk]. With the above information, computation over
such a large grid was not excessively time consuming. The computations
confirmed that our design was globally optimal.

This is our current evidence that the design is globally optimal if half
the observations are taken at the maximal value and half where the v's
equal half their maximal value.

VI. Conclusion

In conclusion, we suggest the use of whatever model is expected to
have constant errors in the dependent variable. For the usual assumptions
of normality and constant variance, we f irther suggest the design of half

2 -1-b x oc,
the observations to the maximum value. x = x., and half to x =

3c
m, to

maximize the accuracy of parameter estimation. It is interesting chat the
statistical assumptions are as important as they seem. It is also interesting
that the optimal design seems to be as simple and extreme as the optimal
desig:, in simple linear regression.
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